Package 'SCI'

Title: Standardized Climate Indices Such as SPI, SRI or SPEI
Description: Functions for generating Standardized Climate Indices (SCI). SCI is a transformation of (smoothed) climate (or environmental) time series that removes seasonality and forces the data to take values of the standard normal distribution. SCI was originally developed for precipitation. In this case it is known as the Standardized Precipitation Index (SPI).
Authors: Lukas Gudmundsson & James H. Stagge
Maintainer: Lukas Gudmundsson <[email protected]>
License: GPL (>= 2)
Version: 1.0-2
Built: 2024-11-15 04:06:02 UTC
Source: https://github.com/cran/SCI

Help Index


Standardized Climate Indices Such as SPI, SRI or SPEI

Description

Functions for generating Standardized Climate Indices (SCI). SCI is a transformation of (smoothed) climate (or environmental) time series that removes seasonality and forces the data to take values of the standard normal distribution. SCI was originally developed for precipitation. In this case it is known as the Standardized Precipitation Index (SPI).

Details

Package: SCI
Type: Package
Version: 1.0-2
Date: 2016-05-02
License: GPL (>= 2)

Author(s)

Lukas Gudmundsson & James Stagge

Maintainer: Lukas Gudmundsson <[email protected]>

References

Stagee, J.H. ; Tallaksen, L.M.; Gudmundsson, L.; van Loon, A.; Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI), 2015, International Journal of Climatology, 35, 4027-4040, doi:10.1002/joc.4267.

Stagee, J.H. ; Tallaksen, L.M.; Gudmundsson, L.; van Loon, A.; Stahl, K.: Response to comment on "Candidate Distributions for Climatological Drought Indices (SPI and SPEI)", 2016, International Journal of Climatology, 36, 2132-2138, doi:10.1002/joc.4564.

Examples

## create artificial data, resembling precipitation
set.seed(101)
n.years <- 60
date <- rep(1:n.years,each=12) + 1950 + rep((0:11)/12,times=n.years)
PRECIP <- (0.25*sin( 2 * pi * date) + 0.3)*rgamma(n.years*12, shape = 3, scale = 1)
PRECIP[PRECIP<0.1] <- 0

## apply SCI transformation
spi.para <- fitSCI(PRECIP,first.mon=1,time.scale=6,distr="gamma",p0=TRUE)
spi <- transformSCI(PRECIP,first.mon=1,obj=spi.para)
plot(date,spi,t="l")

Rough estimates for parameters of selected distributions

Description

Produces rough parameter estimates for specific distributions (distr) that are useful as starting values for maximum likelihood estimation.

Usage

dist.start(x, distr,...)
lmom.start(x, distr = c("gamma","genlog","gev","gumbel",
          "lnorm","norm","pe3","weibull"),...)
mom.start(x, distr = c("gamma","gumbel","logis","lnorm","norm",
          "weibull"),...)

Arguments

x

numeric vector

distr

A character string "name" naming a distribution for which the corresponding density function (dname), the corresponding distribution function (pname) and the quantile function (qname) must be defined (see for example GammaDist)

...

arguments passed to other functions, currently not used.

Details

lmom.start uses L-moments for parameter estimation. In most cases it relies on functionality of the lmomco package. Currently available distributions are: "gamma", "genlog", "gev", "gumbel", "logis", "lnorm", "norm", "pe3", "weibull".

mom.start uses moments (e.g. mean, standard deviation) for parameter estimation. Some estimates are precise, others only approximations that provide reasonable starting values. Currently available distributions are: "gamma", "gumbel", "logis", "lnorm", "norm", "weibull".

dist.start calls first lmom.start to estimate parameters. In case of failure mom.start is called, hopefully producing reasonable parameter estimates.

Value

named list, names correspond to distribution parameters. In case of failure, the same list with NA values is returned.

Author(s)

Lukas Gudmundsson & James Stagge

Examples

lmom.start(rgamma(100,shape=0.5,rate=1),"gamma")

mom.start(rgamma(100,shape=0.5,rate=1),"gamma")

dist.start(rgamma(100,shape=0.5,rate=1),"gamma")

Standardized Climate Index (SCI)

Description

fitSCI identifies parameters for the Standardized Climate Index (SCI) transformation. transformSCI applies the transformation

Usage

fitSCI(x, ...)
## Default S3 method:
fitSCI(x, first.mon, time.scale, distr, p0, 
       p0.center.mass=FALSE, scaling=c("no","max","sd"),mledist.par =  list(),
       start.fun = dist.start, start.fun.fix = FALSE, warn = TRUE, ...)

transformSCI(x, ...)
## Default S3 method:
transformSCI(x, first.mon, obj, sci.limit = Inf, warn=TRUE, ...)

Arguments

x

numeric vector, representing a monthly univariate time series.

first.mon

value in 1:12 indicating the month of the first element of x

time.scale

The time scale (integer) of the SCI calculation. The time scale is the window length of an backward looking running mean.

distr

A character string "name" naming a distribution for which the corresponding density function (dname), the corresponding distribution function (pname) and the quantile function (qname) must be defined (see for example GammaDist)

p0

if TRUE, model Probability of zero (precipitation) months is modeled with a mixed distribution as D(x)=p0+(1p0)G(x)D(x) = p_0 + (1-p_0)G(x), where G(x)>0G(x) > 0 is the reference distribution (e.g. Gamma) p0p0 is the probability of a zero (precipitation) month.

p0.center.mass

If TRUE, the Probability of zero (precipitation) is estimated using a "center of mass" estimate based on the Weibull plotting position function (see details). Only applies if p0=TRUE.

scaling

Indicates whether to do some scaling of x prior to parameter identification. "no" (the default) indicates no scaling. "max" indicates scaling by the maximum of x, such that x <- x/max(x,na.rm=TRUE). "sd" stands for scaling by the standard deviation. Scaling can stabilize parameter estimation.

mledist.par

named list that can be used to pass parameters to mledist in package fitdistrplus.

start.fun

Function with arguments x and distr estimating initial parameters of the function distr for each month. The function should return a named list corresponding to the parameters of distr. (See also dist.start)

start.fun.fix

logical argument, indicating if parameter estimates of start.fun should be used if maximum likelihood estimation breaks down. This stabilizes the implementation but can introduce biases in the resulting SCI.

obj

an object of class fitSCI, output from fitSCI.

sci.limit

Truncate absolute values of SCI that are lage than sci.limit. See details.

warn

Issue warnings if problems in parameter estimation occur.

...

further arguments passed to methods

Details

fitSCI estimates the parameters for transforming a meteorological and environmental time series to a Standardized Climate Index (SCI). transformSCI applies the standardisation. Typical SCI are the Standardized Precipitation Index (SPI), the Standardized Runoff Index (SRI) or the Standardized Precipitation Evapotranspiration Index (SPEI).

To reduce biases in the presence of many zero (precipitation) events, the probability of these events (p0p_0) can be estimated using a "center of mass" estimate based on the Weibull plotting position function (p0.center.mass=TRUE). Following Stagge et al. (2014) the probability of zero events is then estimated as p0=npn+1p_0 = \frac{n_p}{n + 1}, where npn_p refers to the number of zero events and nn is the sample size. The resulting mixed distribution used fro SCI transformation is then

D(x)={p0+(1p0)G(x)if x>0np+12(n+1)if x=0D(x) = \left\{ \begin{array}{l l} p_0 + (1-p_0) G(x) & \quad \mbox{if } x > 0 \\ \frac{n_p + 1}{2(n+1)} & \quad \mbox{if } x = 0 \end{array} \right.

where G(x)>0G(x)>0 is a model (e.g. gamma) distribution.

Uncertainty in distribution parameters can cause unrealistically large (small) SCI values if values in x exceed the values used for parameter estimation (see fitSCI). Therefore transformSCI allows for a truncation of the SCI series such that abs(sci)<=sci.limit. The truncation can be disabled by setting sci.limit=Inf.

Value

fitSCI returns an object of class "fitSCI" with the following components:

dist.para

A column matrix containing the parameters of distribution distr for each month. Row names correspond to the distribution parameters. If p0=TUE an additional row named P0 is introduced, indicating the probability of zero (precipitation) events.

dist.para.flag

an vector indicating possible issues occurring throughout parameter estimation. Possible values are: 0. no problems occurred; 1. starting values could not be estimated; 2. mledist crashed with unknown error; 3. mledist did not converge; 4. all values in this month are NA; 5. all values in this month are constant, distribution not defined.

time.scale

The time scale (integer) of the SCI calculation.

distr

A character string "name" naming a distribution used

p0

logical indicating whether probability of zero (precipitation) events is estimated separately.

p0.center.mass

logical indicating whether probability of zero (precipitation) events is estimated using the "centre of mass" estimator (see Stagge et al. (2014) for details).

scaling

numeric value that has been used to scale x (see argument scaling). A value of 1 results from scaling="no", other values are the maximum value or the standard deviation of x, depending on the choice of the parameter scaling.

call

the function call

transformSCI returns a numeric vector containing the SCI, having values of the standard normal distribution.

Note

This function is intended to be used together with transformSCI.

Author(s)

Lukas Gudmundsson & James Stagge

References

Stagee, J.H. ; Tallaksen, L.M.; Gudmundsson, L.; van Loon, A.; Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI), 2015, International Journal of Climatology, 35, 4027-4040, doi:10.1002/joc.4267.

Stagee, J.H. ; Tallaksen, L.M.; Gudmundsson, L.; van Loon, A.; Stahl, K.: Response to comment on "Candidate Distributions for Climatological Drought Indices (SPI and SPEI)", 2016, International Journal of Climatology, 36, 2132-2138, doi:10.1002/joc.4564.

McKee, T.; Doesken, N. & Kleist, J.: The relationship of drought frequency and duration to time scales Preprints, 8th Conference on Applied Climatology, 1993, 179-184.

Shukla, S. & Wood, A. W.: Use of a standardized runoff index for characterizing hydrologic drought Geophysical Research Letters, 2008, 35, L02405.

Vicente-Serrano, S. M.; Begueria, S. & Lopez-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index J. Climate, Journal of Climate, American Meteorological Society, 2009, 23, 1696-1718.

See Also

dist.start

Examples

##
## generate artificial data
##
set.seed(101)
n.years <- 60
date <- rep(1:n.years,each=12) + 1950 + rep((0:11)/12,times=n.years)
## Precipitation
PRECIP <- (0.25*sin( 2 * pi * date) + 0.3)*rgamma(n.years*12, shape = 3, scale = 1)
PRECIP[PRECIP<0.1] <- 0
## Potential Evapotranspiration
PET <- 0.5*sin( 2 * pi * date)+1.2+rnorm(n.years*12,0,0.2)
## display test data
matplot(date,cbind(PRECIP,PET),t=c("h","l"),col=c("blue","red"),lty=1)
legend("topright",legend=c("PRECIPitation","temperature"),fill=c("blue","red"))

##
## example SPI
##
spi.para <- fitSCI(PRECIP,first.mon=1,distr="gamma",time.scale=6,p0=TRUE)
spi.para
spi <- transformSCI(PRECIP,first.mon=1,obj=spi.para)
plot(date,spi,t="l")

##
## effect of time.scale on SPI
##
spi.1.para <- fitSCI(PRECIP,first.mon=1,time.scale=1,distr="gamma",p0=TRUE)
spi.12.para <- fitSCI(PRECIP,first.mon=1,time.scale=12,distr="gamma",p0=TRUE)
spi.1 <- transformSCI(PRECIP,first.mon=1,obj=spi.1.para)
spi.12 <- transformSCI(PRECIP,first.mon=1,obj=spi.12.para)
matplot(date,cbind(spi.1,spi.12),t="l",lty=1,col=c("red","blue"),lwd=c(1,2))
legend("topright",legend=c("time.scale=1","time.scale=12"),fill=c("red","blue"))

##
## example SPEI
##
if(require(evd)){
    spei.para <- fitSCI(PRECIP-PET,first.mon=1,time.scale=6,distr="gev",p0=FALSE)
    spei <- transformSCI(PRECIP-PET,first.mon=1,obj=spei.para)
    plot(date,spei,t="l")
}

##
## effect of changing different distribution for SPEI computation
##
spei.genlog.para <- fitSCI(PRECIP-PET,first.mon=1,time.scale=6,distr="genlog",p0=FALSE)
spei.genlog <- transformSCI(PRECIP-PET,first.mon=1,obj=spei.genlog.para)
if(require(evd)){lines(date,spei.genlog, col="red")} else {plot(date,spei.genlog,t="l")}
## in this case: only limited effect.
## generally: optimal choice of distribution: user responsibility.

##
## use a 30 year reference period for SPI parameter estimation
##
sel.date <- date>=1970 & date<2000
spi.ref.para <- fitSCI(PRECIP[sel.date],first.mon=1,distr="gamma",time.scale=6,p0=TRUE)
## apply the the parameters of the reference period to all data
## also outside the reference period
spi.ref <- transformSCI(PRECIP,first.mon=1,obj=spi.ref.para)
plot(date,spi.ref,t="l",col="blue",ylim=c(-5,5),lwd=2)
lines(date[sel.date],spi.ref[sel.date],col="red",lwd=3)
legend("bottom",legend=c("reference period","extrapolation period"),fill=c("red","blue"),
       horiz=TRUE)

##
## use "start.fun.fix" in instances where maximum likelyhood estimation fails
##
## force failure of maximum likelyhood estimation by adding "strange" value
## a warning should be issued
xx <- PRECIP-PET; xx[300] <- 1000
spei.para <- fitSCI(xx,first.mon=2,time.scale=1,p0=FALSE,distr="gev")
spei.para$dist.para
## use start.fun, usually ment for estimating inital values for
## parameter optimisation if maximum likelihood estimation fails
spei.para <- fitSCI(xx,first.mon=2,time.scale=1,p0=FALSE,distr="gev",
                    start.fun.fix=TRUE)
spei.para$dist.para

##
## usage of sci.limit to truncate unrealistic SCI values
## 
PRECIP.mod <- PRECIP
PRECIP.mod[300] <- 100 ## introduce spuriously large value
spi.mod.para <- fitSCI(PRECIP.mod,first.mon=1,time.scale=3,p0=TRUE,distr="gamma")
plot(transformSCI(PRECIP.mod,first.mon=1,obj=spi.mod.para,sci.limit=Inf),
     t="l",col="blue",lwd=2)
lines(transformSCI(PRECIP.mod,first.mon=1,obj=spi.mod.para,sci.limit=4),col="red")

##
## how to modify settings of function "mledist" used for parameter identification
## 
## identify parameters with standard settings
spi.para <- fitSCI(PRECIP,first.mon=1,distr="gamma",time.scale=6,p0=TRUE)
## add lower and upper limits for parameter identification
lower.lim <- apply(spi.para$dist.para,1,min) - 0.5*apply(spi.para$dist.para,1,sd)
upper.lim <- apply(spi.para$dist.para,1,max) + 0.5*apply(spi.para$dist.para,1,sd)
spi.para.limit <- fitSCI(PRECIP,first.mon=1,distr="gamma",time.scale=6,p0=TRUE,
                         mledist.par=list(lower=lower.lim, upper=upper.lim))

##
## how to write an own start.fun
## (required if distributions not mentioned in "dist.start" are used)
##
## function with same arguments as "dist.start" 
my.start <- function(x,distr="gamma"){
### code based on "mmedist" in package "fitdistrplus"
    ppar <- try({
        n <- length(x)
        m <- mean(x)
        v <- (n - 1)/n * var(x)
        shape <- m^2/v
        rate <- m/v
        list(shape = shape, rate = rate)},TRUE)
    if (class(ppar) == "try-error") ## function has to be able to return NA parameters
        ppar <- list(shape = NA, rate = NA)
    return(ppar)
}
my.start(PRECIP)
spi.para <- fitSCI(PRECIP,first.mon=1,time.scale=6,p0=TRUE,
                   distr="gamma",start.fun=my.start)

Generalized Logistic Distribution

Description

Density, distribution and quantile function of the generalized logistic distribution

Usage

pgenlog(q, shape, scale, location)
dgenlog(x, shape, scale, location)
qgenlog(p, shape, scale, location)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

shape

shape parameter

scale

scale parameter

location

location parameter

Details

The functions of the genlog family are a reimplementation of the Generalized Logistic Distribution in the lmomco package, making the code compatible with the standard nomenclature for distribution in R. The original functions in lmomco are pdfglo (density function), quaglo (quantile function) and cdfglo (distribution function).

Value

dgenlog gives the density (pdf), pgenlog gives the distribution function (cdf), and qgenlog gives the quantile function (inverse cdf).

Author(s)

James Stagge & Lukas Gudmundsson

References

Asquith, W.H., 2013: lmomco – L-moments, trimmed L-moments, L-comoments, censored L-moments, and many distributions. R package version 1.7.8 , Tech University, Lubbock, Texas.

Examples

dgenlog(1, shape=1, scale=2, location=3)

Pearson Type III distribution

Description

Density, distribution and quantile function of the Pearson Type III distribution

Usage

dpe3(x, shape, scale, location)
ppe3(q, shape, scale, location)
qpe3(p, shape, scale, location)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

shape

shape parameter

scale

scale parameter

location

location parameter

Details

The functions of the pe3 family are a reimplementation of the Pearson Type III Distribution in the lmomco package, making the code compatible with the standard nomenclature for distributions in R. The original functions in lmomco are pdfpe3 (density function), quape3 (quantile function) and cdfpe3 (distribution function).

Value

dpe3 gives the density (pdf), ppe3 gives the distribution function (cdf), and qpe3 gives the quantile function (inverse cdf).

Author(s)

James Stagge & Lukas Gudmundsson

References

Asquith, W.H., 2013: lmomco – L-moments, trimmed L-moments, L-comoments, censored L-moments, and many distributions. R package version 1.7.8 , Tech University, Lubbock, Texas.

Examples

dpe3(1, shape=1, scale=2, location=3)